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Abstract
In this paper, we propose a novel formulation extending convolutional neural networks (CNN) to arbitrary two-dimensional
manifolds using orthogonal basis functions called Zernike polynomials. In many areas, geometric features play a key role in un-
derstanding scientific trends and phenomena, where accurate numerical quantification of geometric features is critical. Recently,
CNNs have demonstrated a substantial improvement in extracting and codifying geometric features. However, the progress is
mostly centred around computer vision and its applications where an inherent grid-like data representation is naturally present.
In contrast, many geometry processing problems deal with curved surfaces and the application of CNNs is not trivial due to the
lack of canonical grid-like representation, the absence of globally consistent orientation and the incompatible local discretiza-
tions. In this paper, we show that the Zernike polynomials allow rigourous yet practical mathematical generalization of CNNs to
arbitrary surfaces. We prove that the convolution of two functions can be represented as a simple dot product between Zernike
coefficients and the rotation of a convolution kernel is essentially a set of 2× 2 rotation matrices applied to the coefficients. The
key contribution of this work is in such a computationally efficient but rigorous generalization of the major CNN building blocks.

Keywords: 3D shape matching, modeling, databases of geometric models/shape retrieval, computer vision - shape recognition,
methods and applications

ACM CCS: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling — Curve; surface; solid and object
representations

1. Introduction

Many areas of scientific research deal with geometric data. The
shapes of objects often encompass critical information for under-
standing scientific trends and phenomena. Such problems often boil
down to identifying latent geometric patterns behind a diversity of
shapes and correlating these geometric characteristics with certain
physical phenomena.

In this regard, convolutional neural networks (CNNs) have
demonstrated a substantially enhanced capacity in capturing and
recognizing geometric features from images or signals, conceiving
the unprecedented advances in computer vision and artificial intelli-
gence over the last several years. However, the success was concen-

trated mostly on computer vision applications where one can enjoy
the canonical grid-structured representation of data and, thus, the
basic operations of CNNs (i.e. convolutions and poolings) could be
seamlessly defined.

On the contrary, the geometry processing community defines
many visual recognition problems on discretely sampled arbi-
trary surfaces. For instance, the segmentation of an LiDAR scan
[AML18,MPS09, DUK*11] can be understood as a point-wise clas-
sification problem defined over point-cloud-approximated surfaces.
Feature detection [SX14, HSB17, NWB15], correspondencematch-
ing [LRR*17, ZBVH09, SHG*17, RRBW*14] and shape classifi-
cation [ESKBC17] are other typical examples of manifold-based
visual recognition problems.
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Figure 1: A schematic overview of a Zernike convolutional neural network.

Figure 2: Problems associated with manifolds when expanding the
notion of convolution. (a) a topological sphere cannot have a grid
defined on it without a singularity (S); (b) the end-up direction of
a vector parallel-transported along a loop on a manifold is path-
dependency; (c) irregularity of a grid causes varying-size receptive
fields.

By their nature, many of these visual recognition problems de-
fined on arbitrary surfaces are analogous to those in the Euclidean
setting. In practice, however, extending CNNs to manifolds is not
trivial due to the lack of fundamental operations which exist in
Euclidean space. As Bronstein et al. [BBL*17] point out, ‘(CNNs)
have been most successful on data with an underlying Euclidean
or grid-like structure, and in cases where the invariants of these
structures are built into networks used to model them’. For instance,
the hairy ball theorem [EG79] shows that it is impossible to install
a grid on a domain homeomorphic to a sphere without creating a
singular point where we lose the notion of orientation (Figure 2(a)).
And even though there was a grid structure somehow defined with-
out a singularity, when we transport a vector in parallel across the
manifold, the direction of the vector can end up differently accord-
ing to the path we take, which is so-called holonomy (Figure 2(b)).
Therefore, the sliding convolution kernels along a loop path on a
surface can cause a change of orientation when it comes back to
the starting point. Moreover, the grid may be irregular, causing
varying sizes of the effective receptive fields across the manifold
(Figure 2(c)).

In this work, we propose a novel mathematical formulation of
CNNs on arbitrary surfaces as illustrated in Figure 1. The key
innovation of the proposed approach resides in the local piece-wise
parameterization of a tensor field using the Zernike polynomial
bases [vF34], as well as the discovery of the following analytic
properties that are useful for computation: the Zernike orthogonal

basis functions allow a rigourous but straightforward generalization
of convolution that ultimately result in a simple dot product be-
tween Zernike polynomial coefficients (Section 3.3). Furthermore,
rotations of convolution kernels on the tangent spaces, which are in-
evitable in relevant manifold CNN literature, can be greatly simpli-
fied to 2× 2 matrix rotation under the Zernike setting (Section 3.2).
This enables concise definition of the angular pooling, as well as
introducing new possibilities for direction preserving convolutions
(Section 4.4). Therefore, the main contribution of this paper is to
generalize the representation of CNN operators on surfaces while
maintaining their simplicity. Finally, building upon these new theo-
retical grounds, we propose a new approach called ZerNet (Zernike
CNN) and demonstrate its performance in comparison with the
other state-of-the-art methods in both classification and regression
tasks.

2. Related Works

Although there has been vigorous research activity surrounding
CNNs, only a few have focused on non-Euclidean CNNs, despite
the numerous applications and benefits mentioned above. Existing
work on non-Euclidean CNNs falls into one of the two following
categories: spectral methods and spatial methods.

Spectral methods. Pioneering works [BZSL13, HBL15, DBV16,
YSGG17] defined the convolution operation on manifolds by em-
ploying a spectral graph processing approach. The main theoret-
ical foundation for this is the convolution theorem, which states
that the convolution f ∗ g of two functions f and g is equivalent
to a simple element-wise product in the Fourier (spectral) domain:
F ( f ∗ g) = F ( f )� F (g), where F denotes the Fourier transform
and� is the element-wise Hadamard product. The convolution the-
orem generalizes to manifolds quite effortlessly as when we letU be
the linear Fourier operator on a manifold, the convolution theorem
gives:

f ∗ g= U�{(U f )� (Ug)}. (1)

The manifold Fourier operatorU is essentially the eigenfuctions
of the Laplace–Beltrami operator �g defined on (M, g). The
Laplace–Beltrami operator �g is a generalization of the second-
order derivative, Laplacian, on Riemannian manifolds and the
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discretization of the Laplace–Beltrami operator is well understood
in literature, for example, as in [MDSB03].

This elegant generalization suffers from three main flaws in prac-
tice. First, the computation of U is prohibitively expensive when
there is a large set of vertices, as it requires the eigendecom-
position of the linear operator �g. More recent works [DBV16,
KW16, BMM*15] have introduced circumventing measures to limit
the computation of eigenfunctions to local regions by using com-
putational techniques such as windowed Fourier transformations
[SRV16].

Aside from these speed concerns, a more fundamental issue lies
in the numerical behaviour of the eigenfunctions. It is well known to
the geometry processing community that the eigenfunctions can flip
signs and change orderings [LZ10, RCG08]. In the context of geo-
metric data analysis, this can be critical since the eigenbases across
different geometric models may vary and may not be compatible,
making it impossible to represent convolution kernels consistently.
Finally, spectral kernels are rotationally symmetric as the spectral
bases are isotropic [BZSL13, BMM*15], which limits the expres-
siveness substantially [CWKW19].

Spatial methods. Spatial approaches follow a more straightfor-
ward and explicit generalization of CNNs, as in [DMI*15, NAK16,
HCQ17]. In contrast to the spectral formulations where the con-
volution is implicitly reparameterized using spectral bases, in spa-
tial formulations, convolution is defined more explicitly and intu-
itively on tangent spaces of the manifold. For example, Masci et al.
[MBBV15] applied convolution kernels on local geodesic disks to
approximate the tangent spaces. This idea quite naturally general-
izes the explicit notion of convolution onto manifold domains. In
a similar work, Boscaini et al. 2016 used anisotropic heat kernels
to enable higher expressivity. Monti et al. 2017 further improved
the local geodesic disk convolution idea by introducing the notion
of trainable local parameterization such that the network learns co-
ordinate values of the neighbouring points on geodesic disks from
data. More recently, Honocka et al. [HHF*19] similarly discretized
tangent spaces on one-ring neighbourhoods of edges on a triangu-
lar mesh.

One problem is a majority of these works [MBBV15, MRB*16,
MBM*17], via the use of angular pooling resolve the directional
ambiguity caused by holonomy, end up suppressing the features
directionality. Recent works such as [HHF*19] instead introduce
the notion of invariant convolutions. Unfortunately, these methods
achieve directional invariance at the cost of feature directionality
giving them, in essence, the same issues. Verma et al. 2018, instead,
proposed a data-driven scheme to attain directional correspondences
among patches, by designing the network to learn the correspon-
dence between the kernels. Some very recent works [PO18, SDL18,
CWKW19] contain a more mathematically rigourous solution to
these directional ambiguities by introducing a vector field indicating
the orientation of the local coordinate charts.

In summary, as opposed to the spectral methods, the spatial
approaches do not assume global function bases, so that kernels are
made explicit and compatible across different domains. Further,
compare to spectral approaches, spatial methods tend to be com-
putationally more efficient as they do not require an eigenvector

Figure 3: Examples of Zernike bases.

Figure 4: Zernike decomposition of a function.

computation. However, at the same time, mathematical rigour is
often lost during the spatial discretization process. Furthermore,
local neighbourhood topology can vary across different locations
on the manifold, rendering another obstacle for convolving kernels
consistently.

The proposed method combines the advantages of spectral and
spatial approaches. In our formulation, the convolution kernels are
applied on local tensor fields spatially extracted from the surface.
We parametrize the local tensor field via a set of corresponding co-
efficients of Zernike polynomials, which preserves themathematical
rigour similarly to spectral approaches.

3. Zernike CNNs

In this section, we first introduce Zernike polynomials with their
formal definition and examine their analytic properties. We employ
them to describe the local geometry of a surface on the local
tangent spaces. We will then define manifold convolution by using
the notion of tangent spaces under Zernike formulation. Finally, we
discretize the continuous formulation of the Zernike convolution to
define ZerNet.

3.1. Zernike polynomials

Zernike polynomials Zi are an orthogonal polynomial basis for
functions defined over the unit disk � ∈ R

2 such that 〈Zi, Zj〉 =∫
�
Zi(t )Zj(t )dt = 0 for all i �= j, where 〈·, ·〉 denotes the inner prod-

uct. The formal definition of the Zernike polynomials is separated
into even and odd sequences denoted in Zmn (r, θ ) and Z

−m
n (r, θ ),

respectively:

Zmn (r, θ ) = Rmn (r) cos(mθ ),

Z−m
n (r, θ ) = Rmn (r) sin(mθ ), (2)
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where m and n are non-negative integer indices with m ≤ n; r ∈
[0, 1] is the radial distance and θ is the azimuthal angle on the disk.
Here, Rmn (r) is called the Zernike radial polynomial, defined as:

Rmn (r) =

⎧⎪⎨
⎪⎩

n−m
2∑

k=0
(−1)k (n−k)!

k!( n+m2 −k))!( n−m2 −k)! r
n−2k, if n− m even

0, otherwise

(3)

Figure 3 illustrates the first few Zernike basis functions. Due to
simple analytic properties, Zernike polynomials are widely used in
optometry and ophthalmology to describe aberrations of the cornea
or to represent lens distortions in optics. As we will see in later
sections, we take advantage of such simple analytic properties of
Zernike polynomial bases for extending CNNs on manifolds.

In practice, Zernike polynomials can be normalized with a nor-

malization factor
√
2−δ(m,0)

π
such that the integral over the unit disk

becomes unity:

Ẑmn (r, θ ) = Zmn (r, θ )

√
2− δ(m, 0)

π
, (4)

where Ẑmn denotes the normalized Zernike polynomial and δ is the
Kronecker delta function. Due to their orthonormality over the unit
disk, the normalized Zernike polynomials can serve as bases for de-
composing a complex function as a weighted sum, such that any
function f (r, θ ) defined on the domain [0, 1]× [0, 2π ) can be ex-
pressed as:

f (r, θ ) =
∞∑
n=0

n∑
m=−n

αnmẐ
m
n (r, θ ). (5)

For the sake of brevity, in the rest of the paper we use the term
Zernike bases standing for the normalized Zernike polynomials, de-
noted as Zi(r, θ ) with index i corresponding to a certain pair of (n,m)
in (5) following the ordering suggested by Figure 3. Thus (5) can be
expressed as:

f (r, θ ) =
∞∑
i=1

αiZi(r, θ ), (6)

and we use the term Zernike coefficients to represent the set of
weights αi corresponding to Zernike bases Zi, which can be inter-
preted as the coordinate vector of f in the Zernike base space.

3.2. Rotation

We want to be able rotate our functions in later sections, i.e, be able
to compute f (r, θ + φ). To facilitate this, we establish some rota-
tional properties of Zernike polynomials. Using the sum of angle
formulae for trigonometric functions, we obtain

Zmn (r, θ + φ) = Zmn (r, θ )cos(mφ)− Z−m
n (r, θ )sin(mφ),

Z−m
n (r, θ + φ) = Z−m

n (r, θ )cos(mφ)+ Zmn (r, θ )sin(mφ). (7)

Therefore, for a function f decomposed as in (5), we then derive the
following representation of its rotation with an angle offset φ as:

f (r, θ + φ) =
∑
even

αm
n Z

m
n (r, θ + φ)

+
∑
odd

α−m
n Z−m

n (r, θ + φ)

=
∑
even

α̃m
n Z

m
n (r, θ )

+
∑
odd

α̃−m
n Z−m

n (r, θ ), (8)

where α̃i is computed via the rotational transform:[
α̃m
n

α̃−m
n

]
=

[
cos(mφ) sin(mφ)
−sin(mφ) cos(mφ)

] [
αm
n

α−m
n

]
, (9)

To lessen the notational burden, for a function decomposed as in (6),
we will represent its rotation with an angle offset φ as:

(Rot(φ))( f ) = f (r, θ + φ) =
∞∑
i=1

α̃i(φ)Zi(r, θ ), (10)

where α̃i(φ) corresponds to the rotated coefficient from (9).

3.3. Zernike convolution

We generally view convolution on two-dimensional Cartesian space
as the ‘sliding’ of a filter over the image and measuring how much
the image matches our filter. Using this visual, we seek to define
convolution on the manifold similarly. Our filter will remain tangent
to the manifold as we slide it around, then we locally parameter-
ize our space using the tangent space and do the usual convolution.
Thus, we let g : TpM → R be our ‘filter’ and f :M → R be our
‘image’. The aim here is to show that if we represent f and g locally
at p using Zernike polynomials as in (6), the convolution on a mani-
fold is nothing but a simple vector dot product of Zernike coefficient
vectors on a tangent space and, thus, the convolution operation on
a manifold is greatly simplified. We will also show that the rotation
of a kernel also becomes a set of simple 2× 2 matrix rotations un-
der this formulation. Hence, without compromising mathematical
rigour, ZerNet can be defined on arbitrary surfaces efficiently while
remaining compatible with existing tensor-based Euclidean CNN
software packages.

3.3.1. Convolution on manifold

We would like to define the con-
volution onmanifolds by using the
notion of tangent spaces. First, for
a given function f :M → R de-
fined on a manifold M, we can
locally parameterize f in terms
of tangent vectors attached at p ∈
M by pulling back f to the tan-
gent space TpM by the exponen-
tial map:

fp(v)
def= (exp∗

p f )(v) = ( f ◦ expp)(v), (11)
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for all v ∈ TpM and ‖v‖ < R, whereR defines the radius of the local
neighbourhood around p. The radius R later will be weaved into the
ZerNet implementation as a user-defined parameter concerning the
size of the convolution kernel. Intuitively, we can think of (11) as
projecting v onto the manifoldM, sampling the function value of
f at the tip of the arrow, and bringing it back to TpM, for each and
every ‖v‖ < R.

Now, let us consider a convo-
lution kernel g :M → R defined
around some ‘origin’ x ∈ M. Note
that the origin x here is a temporary
reference we introduce to facili-
tate the discussion and will even-
tually disappear in the formulation.
Hence, any arbitrary point on M

can be chosen to serve as our x. As in (11), we can pullback the
kernel g to the tangent space TxM by gx = g ◦ expx. Under this set-
ting, we can parallel transport gx from the tangent space at x to the
tangent space at p along some path γ ⊂ M connecting x and p.
From the perspective of p, this is a process of pulling back the func-
tion gx from TxM to TpM (i.e. coordinate transform from TxM to
TpM). Therefore, when the mapping 
γ : TpM → TxM is the iso-
morphism (i.e. an invertible mapping) induced by the parallel trans-
port along γ , the transported kernel gp : TpM → R

c is simply the
pullback 
∗

γ of the function gx, or formally, gp = 
∗
γ gx = gx ◦ 
γ ,

where the asterisk (∗) is used to denote the pullback. Under this set-
ting, the convolution f ∗ g at p is defined as:

( f ∗ g)(p) = 〈 fp, gp〉 =
∫
TpM

fp(v)gp(v)dA. (12)

Here, by representing v in polar coordinates v = (r, θ ) and by (6),
we achieve

( f ∗ g)(p) =
∫∫

r,θ

∑
i

αi
f Zi(r, θ )

∑
i

αi
gZi(r, θ )r dr dθ

=
∫∫

r,θ

∑
i, j

αi
fα

j
gZi(r, θ )Zj(r, θ )r dr dθ. (13)

Note, the area integral is about r and θ , but not the Zernike coef-
ficients αi. Therefore, by the orthonormality

∫
ZiZ jdA = δ

j
i , where

δ
j
i is the Dirac delta function, the equation simplifies to:

( f ∗ g)(p) =
∑
i

αi
fα

i
g, (14)

which is merely a vector dot product between the Zernike coefficient
vectors α f and αg at p.

Furthermore, if we assume the isomorphism
γ is an isometry be-
tween TpM and TxM, gx and gp are the same up to rotation. There-
fore, in practice, we do not need to actually do anything to pullback
gx to TpM but, instead, just reuse the same r, θ representation of gx
for gp with an angle offset φ, such that gp = (Rot(φ))(gx). Mean-
while, from the proof given in Section 3.2, the rotational transfor-
mation Rot(φ) of gx can be achieved simply as a set of 2× 2 matrix
rotations of the Zernike coefficient vectors, presenting an analytic,
vector-space formula for the parallel transport.

3.3.2. Discretization

With the above continuous theory, discretization is rather straight-
forward. Here, with a remark that the above continuous theory can
be discretized to virtually any type of discretization, be it point
clouds, polygonal meshes and parametric surfaces, we demonstrate
here only the triangular mesh case for brevity.

Exponential map. Computation of
a discrete exponential map has been
widely studied in computer graphics
and relevant areas, for a variety of
purposes such as interactive drawing
on surfaces [SGW06] and local remeshing [MR12]. These methods
aim to find the shortest geodesic paths from a reference point to its
neighbours using variants of the Dijkstra’s algorithm. In this work,
we employ the method presented in Melvaer et al. [MR12] to com-
pute the exponential map at each point. Furthermore, by measuring
the angle from some reference direction to the geodesic curve, we
can also determine the azimuth θ . Here, the reference direction typi-
cally is arbitrarily picked, most commonly based on the local order-
ing (indexing) of the neighbouring points. To this end, we again use
the method of Melvaer et al. [MR12] for the results presented in this
paper. However, there are methods such as Crane et al. [CWW17],
which can be extended to a much broader scope including point
clouds, subdivision surfaces, noisy/partial meshes and spline
surfaces.

Zernike decomposition. From (6) and the geodesic polar coordi-
nates (r j, θ j ) computed via the discrete exponential map, the rela-
tionship fp(r j, θ j ) = ∑

i α
i
f Zi(r j, θ j ) holds true for all (r j, θ j ) in the

neighbourhood (Figure 4). This in fact is a linear system of equa-
tions solved locally at p. In implementation, the summation is ap-
proximated with a finite number of terms k instead of the infinite
sum. The number of points in the neighbourhood may be lesser than
k. In this case, we simply sample more points by linearly blending
the existing points and their function values. Practically, we sample
a greater number of points in the neighbourhood than k and solve
the linear system in a least square manner.

Convolution. With the above discretization, the local parameteri-
zation fp can be represented as a k × d tensor, where k is the number
of Zernike polynomials used in decomposition and d is the dimen-
sionality of the input, analogous to the number of image channels
in image-based CNNs. If a manifold is discretized with N points,
the stack F = [ fp] of parameterized functions is an N × k × d ten-
sor. Meanwhile, the convolution kernel g can also be similarly dis-
cretized as k × d. However, due to the rotation of the kernel in-
duced by parallel transport, the tensorG corresponding to g requires
an additional axis for the rotation parameter, such that G becomes
k × d × s, where s is the angular resolution. Finally, from the fact
that Zernike convolution is a simple dot product between the coef-
ficient vectors (i.e. (14)), the implementation of the Zernike convo-
lution layer becomes a simple tensor dot product between F and G
along k and d axes, producing an N × s response.

Angular pooling. With the response produced via convolution,
the activation maps defined across different direction configurations
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Figure 5: Multi-scale ZerNet architecture.

along the angular axis can be down-sampled via angular-pooling op-
eration. Similar to the (spatial) max-pooling layers in conventional
CNNs, angular-pooling selects the maximum value among the ac-
tivations produced by convolution kernels in different orientations,
producing N response.

4. Experiments

We validate the proposed approach against two supervised learn-
ing tasks, namely, classification and regression. For classification,
we test our algorithm against two popular problems in geometry
processing: point-wise correspondence matching and semantic seg-
mentation, which are both commonly formalized as per-vertex clas-
sification problems. For regression, we introduce a new dataset in
which the goal is to predict a scalar field defined on a surface.

4.1. 3D shape correspondence

The goal of 3D shape correspondence problem is to find semanti-
cally meaningful one-to-one matching between points on a query
surface and points on a reference surface.

Dataset. We employ the FAUST human data set [BRLB14] with
the similar experimental setup as in other state-of-the-art methods
[MBBV15, BMR*16, MBM*17, VBV18]. The dataset consists of
100 watertight meshes of 10 different subjects with 10 different
poses for each. Each mesh contains 6890 vertices and the seman-
tic correspondence among the vertices are already established in the
dataset. We utilize this as a ground truth for the training, but pretend
no such information is provided in testing.

Input processing. We normalize the 100 mesh models in FAUST
data set to have the same surface area, 15,000 cm2 with an approxi-
mate shape diameter of 200 cm. For initial input, we take the canon-
ical XYZ-coordinates of mesh vertices as the input to the network.

Network architecture and parameter setting. For fair com-
parison with the other state-of-the-art methods [MBBV15,
BMR*16,MBM*17, VBV18], we first testConv64 → Conv128 →
Conv256 → Lin512 → Lin6890+ sof tmax, a single-scale archi-
tecture that generalizes the other methods. The numbers in the layer
names indicate the dimension of the output channel. In each of the

Figure 6: Geodesic errors (in % of the shape diameter) on two test
shapes using single-scale and multi-scale ZerNet architectures.

Table 1: Correspondence accuracy on the FAUST human dataset of our
method and recent state-of-the-art manifold convolution approaches. Accu-
racies for the compared methods [MBBV15, BMR*16, MBM*17, VBV18]
are directly taken from the corresponding papers.

Method Input Accuracy

ACNN [BMR*16] w/o refinement SHOT 60.6%
ACNN [BMR*16] w/refinement [OBCS*12] SHOT 62.4%
GCNN [MBBV15] w/o refinement SHOT 65.4%
GCNN [MBBV15] w/refinement [OBCS*12] SHOT 42.3%
MoNet [MBM*17] w/o refinement SHOT 73.8%
MoNet [MBM*17] w/refinement [VLR*17] SHOT 88.2%
FeaStNet [VBV18] w/o refinement XYZ 88.1%
FeaStNet [VBV18] w/refinement [VLR*17] XYZ 92.2%
ZerNet (Ours) w/o refinement XYZ 94.7%
FeaStNet [VBV18] multi-scale XYZ 98.7%
ZerNet (Ours) multi-scale XYZ 96.9%

Conv block, we set the kernel size r0 = 5.5 cm for computing the
local exponential map. For the discretization of local exponential
map, we first uniformly sample 12,000 surface points across the
entire surface via the Poisson disk sampling [PPA13], and collect
50 sampled points in the neighbourhood of every mesh vertex
within the radius r0. The first 21 Zernike bases (k = 21) are used
for Zernike decomposition.

Meanwhile, a multi-scale architecture to incorporate higher con-
textual information is proposed in [VBV18], and we also compare
our method in the multi-scale setting. To this end, we set the kernel
sizes (r0) as 4.5, 5.5 and 6.75 cm, respectively, for three scales of
Conv blocks (ZerConv1, ZerConv2 and ZerConv3 as in Figure 5).
For discretization, we uniformly sample 18,000, 12,000 and 8000
surface points over the mesh surface, respectively, for the three
scales of Conv blocks. Note that the total number of sample points
over the surface is inversely proportional to the square of r0. Thus,
for different scales, the number of discretized samples surrounding
the mesh vertex within its local exponential map remains approx-
imately the same. We collect 50 discretized samples in the neigh-
bourhood and use the first 21 Zernike bases (k = 21) for Zernike de-
composition.

The two models above were trained using the Adam optimizer
[KB14] with the sparse categorical cross-entropy loss as the ob-
jective. The training of our model at a single-scale took on average
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Figure 7: Point-wise geodesic error (in % of the shape diameter) of ZerNet versus FeaStNet on the FAUST human dataset [BRLB14]. Results
are generated based on raw performance of both approaches shared a similar single-scale architecture.

Figure 8: Shape correspondence quality obtained by different
methods on the FAUST human dataset. Results are generated based
on the raw performance of each method without additional post-
process refinements.

174 s per epoch on a machine with a single NVIDIA GeForce GTX
1080 Ti graphics card. The multi-scale model in Figure 5 took 413
s per epoch on average.

Results. To evaluate the performance, we first compare the classi-
fication accuracy, defined as:

Accuracy = true classification

total number of surface points
. (15)

The test result is reported in Table 1. As shown in the table, with
single-scale architecture, ZerNet outperformed all other state-of-
the-art methods with the accuracy of 94.7%, even without addi-
tional refinement post-processes [OBCS*12, VLR*17]. In multi-
scale setting, FeaStNet [VBV18] outperformed ZerNet with less
than 2% margin.

We further evaluated the quality of correspondence using the
Princeton Benchmark [KLF11]. The quality of correspondence is
measured by the percentage of correctly predicted matches within a
geodesic disk around the ground-truth. The results were plotted in
Figure 8 with varying radii of the geodesic disk from 0% to 10% of
shape diameter. In single scale, our method demonstrates a signifi-
cantly better quality of correspondence than all the other benchmark
methods. In multi-scale, FeaStNet shows the top performance at the
zero radius (smallest error tolerance). With larger radii, however,
ZerNet begins to outperform FeaStNet.

Figure 6 visualizes the point-wise geodesic correspondence er-
rors on two representative shapes of the two test subjects using our
single-scale and multi-scale ZerNet architectures. Figure 7 shows
the point-wise geodesic correspondence error of our method in
comparison with the most recent state-of-the-art method, FeaStNet
[VBV18], based on the similar single-scale architecture.

4.2. Semantic segmentation

In addition, we validate ZerNet on semantic segmentation prob-
lem. We compared ZerNet against other state-of-the-art methods,
including Toric-cover CNN [MGA*17], PointNet++ [QYSG17],
Dynamic graph CNN [WSL*18] and MDGCNN [PO18].

Dataset. We use the human segmentation benchmark in
[MGA*17] for comparison. The training set consists of 370 models
collected from SCAPE, FAUST, MIT and Adobe Fuse [Ado16]. All
models are manually segmented into eight labels, one for the head,
one for the torso, three for the arms and three for the legs. The test
set is the 18models collected from the SHREC07 dataset in ‘human’
category.
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Table 2: Segmentation accuracy on the human body dataset introduced in
[MGA*17] of our method and several state-of-the-art methods. Accuracies
for the compared methods [MGA*17, QYSG17, WSL*18, PO18] are directly
taken from [PO18].

Method Input Accuracy

Toric cover [MGA*17] WKS,AGD,curv. 88%
Pointnet++ [QYSG17] XYZ 90.8%
DynGraphCNN [WSL*18] XYZ 89.7%
MDGCNN [PO18] XYZ 88.6%
ZerNet (Ours) XYZ 88.7%

Figure 9: Semantic segmentation on human body shapes.

Experiment setting. We normalize all human models to have the
same surface area, 15,000 cm2, and take XYZ-coordinate of mesh
vertices as the input to ZerNet. For the network architecture and
parameters setting, we follow the same setting as the single-scale
architecture used for the shape correspondence experiment (Sec-
tion 4.1). Compared to the dense correspondence task, as the classi-
fication classes required for segmentation is significantly reduced
(6, 890 → 8), a similar architecture but with less output chan-

Figure 10: Inconsistent segment labelling in human-labelled
ground truth.

Figure 11: Semantic segmentation on the FAUST human dataset.

nel dimensions of each layer is adopted: Conv32 → Conv64 →
Conv128 → Lin256 → Lin8+ sof tmax. We trained this this archi-
tecture on 370 models in the data set, which took 16 min 38 s per
each epoch on average.

Results. As shown in Table 2, ZerNet performs the segmentation
task in a high accuracy, comparable to the other state-of-the-art
methods. As shown in Figure 9 (a), the overall segmentation qual-
ity of ZerNet was satisfactory, except near the boundaries between

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



Z. Sun et al. / Convolutional Neural Networks on Arbitrary Surfaces 9

Table 3: Point-wise regression result of ZerNet vs FeaStNet over five validation cases. Performance was measured with the following criteria: mean absolute
percentage error (MAPE), relative root mean square error (RRMSE), Pearson correlation coefficient (PCC) and hit-rate (HR). Subscripts under HR represents
the tolerance threshold (10%, 20% and 30%) and HR was calculated as the percentage ratio of the number of the vertices that have the scalar values accurately
predicted over the total number of mesh vertices.

ZerNet FeaStNet
Model ID MAPE RRMSE PCC HR10 HR20 HR30 MAPE RRMSE PCC HR10 HR20 HR30

TPIa105I 10.11% 13.04% 0.91 65.84% 90.81% 97.24% 16.09% 19.98% 0.80 48.66% 74.37% 86.36%
TPIa166I 9.57% 12.97% 0.87 68.92% 90.75% 95.21% 13.38% 15.86% 0.79 45.72% 79.79% 92.89%
TPIa182I 14.32% 18.70% 0.87 45.63% 77.60% 92.58% 19.99% 24.60% 0.76 35.71% 64.03% 79.27%
TPIa32I 13.80% 16.32% 0.88 50.48% 82.53% 93.24% 23.89% 25.73% 0.65 28.37% 54.48% 73.38%
TPIa33I 9.60% 13.98% 0.90 65.30% 90.70% 97.61% 13.78% 17.71% 0.82 52.25% 78.92% 89.92%

Table 4: Point-wise regression result of ZerNet under direction preserving
setting over five validation cases.

ZerNet w/direction preserving
Model ID MAPE RRMSE PCC HR10 HR20

TPIa105I 9.97% 13.15% 0.91 68.64% 91.31%
TPIa166I 9.90% 12.87% 0.87 65.33% 91.18%
TPIa182I 13.07% 17.91% 0.88 54.05% 82.49%
TPIa32I 13.56% 16.02% 0.88 55.76% 84.56%
TPIa33I 9.37% 12.81% 0.91 67.13% 90.51%

Table 5: Computational time for ZerNet with different angular resolution.

Angular resolution s = 1 s = 4 s = 8 s = 16

Training time 2.08 s 7.55 s 14.58 s 28.26 s
Testing time 1.55 s 4.55 s 8.26 s 15.52 s

segments. For these, we noticed inconsistencies in human-labelled
ground truth across the dataset, as in the example illustrated in Fig-
ure 10, where the boundaries between the thigh and pelvis did not
agree between ground truth labels. In fact, such an error prevailed
in the data set from visual inspection. Hence, the minor differences
in accuracy within 2% margin in Table 2 could only be interpreted
as a sanity check.

Additional experiment on FAUST dataset. Complementary to
the previous experiment, here we provide another result of analysis
conducted only on the FAUST dataset this time. We found that the
segmentation labels in the FAUST dataset are more consistent and
reliable since the ground truth labels have been obtained by register-
ing a pre-labelled mesh (details on the registration can be found in
the FAUST paper [BRLB14]). The FAUST dataset is comprised of
dynamic 3D scans of 10 individuals in 10 different postures each.
We used 80 FAUST models corresponding to eight randomly se-
lected individuals in different poses; the remaining 20 models cor-
responding to the two left-out subjects were used for testing. We
adopted the same setting as in the previous experiment for the net-
work architecture and the hyper-parameters.

In this additional experiment, we achieved a segmentation accu-
racy of 96.6% on average. Figure 11 visualizes some of the test re-

sults. This result proves the good segmentation accuracy of ZerNet,
complementary to the result in Table 2.

4.3. Aneurysm wall stress estimation

Lastly, we validate our method on a scalar field regression task.
Specifically, the problem is to estimate the mechanical stress dis-
tributed over the surface of cerebral aneurysm.

Data set. To this end, we introduce a new benchmark data set com-
prised of 3D surface meshes of 26 cerebral aneurysm cases. Accord-
ing to relevant literature [LZR07, LZR08, LL16, LFBL18], themag-
nitude of themechanical stress distribution on aneurysm is known to
be correlated with the local surface geometry. The goal here, there-
fore, is to utilize CNNs to predict the stress distribution on aneurysm
based on surface geometry. This is essentially a scalar-field regres-
sion problem defined on a surface. The ground-truth values are com-
puted from finite-element (FE) simulations. The aneurysm mod-
els are different in mesh topology such that the number of vertices
and how the vertices are connected are inconsistent across differ-
ent models. The total number of mesh vertices across the aneurysm
models varies from 1,135 to 8,197 and the surface area is in a range
between 27.72 and 169.23.

Input processing. We first normalize the 26 aneurysm models to
have the same surface area of 100. colorred Based on the fact that
the wall stress is proportional to the square root of surface area
as the governing physics equation states, the wall stress value is
also scaled accordingly. We then uniformly sample 8,000 random
points on each mesh surface alongside the stress value, with an
assumption that the stress distribution is piece-wise linear colorred
on each triangle.

Network architecture and parameter setting. We again use the
similar architecture as in the single-scale shape correspondence ex-
periment: Conv128 → Conv256 → Conv512 → Lin800 → Lin1.
We set r0 = 0.6 for computing the local exponential map. We use
the first 21 Zernike bases (k = 21) for Zernike decomposition.
The Adam optimizer was used for training, with the mean squared
error (MSE) loss between ground truth and stress prediction on all
sampled points of each aneurysm as the objective. It took 58s
on average for one training epoch by using a single GTX 1080
graphics card.
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Figure 12: Visualization of the estimated wall stress distribution and the distributed absolute percentage errors on five validation cases. Each
row corresponds to the row of the same order in Table 3.

Results. We cross-validated our method along with the current
state-of-the-art FeaStNet [VBV18]. Among the 26 aneurysm sur-
faces, we randomly selected five cases for performing leave-
one-out cross validations. For each of the cases among the five,
we left it out as the validation set and used the rest 25 mod-

els in our data set as the training set to train the ZerNet or
FeaStNet.

The result is reported in Table 3. In addition, Figure 12 visual-
izes the stress estimation results on the five validation cases and
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their point-wise error (in percentage of the true stress value on each
vertex). We can notice that ZerNet outperformed FeaStNet for all
metrics as presented in Table 3, and achieved a satisfactory quality
of stress estimation significantly better than FeaStNet.

It should be noted that neither ZerNet nor FeaStNet is success-
ful in predicting correct values near the boundary. This may be due
to incorrect boundary conditions (‘zero-padding’ is enforced cur-
rently). Hence, it would be worthwhile to investigate practical ways
to assign boundary conditions in future research.

4.4. Directional convolution

As discussed in Section 2, a critical bottleneck in many geometric
CNNs is the suppression of feature directionalities, resulting from
the path dependency of the kernel rotation during parallel trans-
port. In the above experiments, we applied angular pooling after
each convolution. However, directional features would have been
neglected under this setting as the angular pooling applied after each
convolution layer suppresses the development of directionality in
convolved features. Similar to the idea proposed in [PO18], we can
define a directional function fp(r, θ; φ) on each tangent space TpM,
as a function fp(r, θ ) parameterized by an additional direction pa-
rameter φ. Then, the activation maps in CNNs are modelled as di-
rectional functions to resolve ambiguities in feature directions. The
advantage of ZerNet, that is, the fact that a rotation of a function is
simply a 2× 2 matrix rotation, allows us to write an analytic for-
mula for directional functions, as opposed to discrete angular bin
based heuristics used in [PO18].

With the idea of directional function, the single-scale correspon-
dence matching experiment in Section 4.1 and the wall stress esti-
mation experiment in Section 4.3 have been redone. For both experi-
ments, we set the angular resolution s = 4 and preserve the direction
axis in each activation map between Conv blocks. For the corre-
spondence matching experiment, we observe a noticeable increase
in accuracy from 94.7% to 96.1%. For the wall stress estimation ex-
periment, we also observed meaningful improvement in prediction
accuracy as in Table 4. We also have tested in higher angular reso-
lutions, that is, s = 8, 16, but the improvement of the performance
was limited despite the increase of the computational time (Table 5).
Hence, this awaits further investigation and optimization in the
future.

5. Conclusion

In this paper, we introduced a new concept of Zernike convolution
as a way to generalize convolution to curved surfaces. We showed
that Zernike convolution seamlessly generalizes convolution opera-
tions to an arbitrary surface in a mathematically rigourous and con-
cise manner. In particular, we proved that manifold convolution can
be formalized through decomposition of the local geometry defined
on the tangent spaces and that convolution operations became sim-
ple dot products of Zernike polynomial coefficients. In addition, we
showed that rotations of convolution kernels, which could be crit-
ical in manifold settings, could also be rigorously represented as
simple 2× 2 rotational transforms. Building upon this, we further
demonstrated a promising vision of equipping our formulation as a
theoretical foundation for direction-preserving convolution, which

will bring more mathematical rigour to the generalization of geo-
metric CNNs in fundamental. As a scalable algorithm developed
upon our formulation, ZerNet also illustrated our competitiveness
against other state-of-the-art methods on both classification and re-
gression tasks.

For the future work, it would be worth exploring ways to further
equip ZerNets with the other essential building blocks of CNNs such
as spatial pooling/unpooling, transposed convolution, boundary
padding and so forth. Particularly, encoder–decoder type networks
on manifolds would be an interesting direction of research, as it
can benefit potentially a large amount of computational geometry
applications that requires parametrization (i.e. latent space embed-
ding) of geometric shapes (e.g. [BL12, kSFMG12, FB12, BWS*13,
LMR*15, BL16, PWH*17]. Furthermore, the injectivity over the
tangent plane is not always guaranteed in the current manifold
CNN approaches including the present work. For example, thin
cylindrical shapes like fingers may have the exponential map
defined on a non-injective geodesic disk, as the geodesic disk
may self-overlap. Hence, how to properly account such features
would also be a valuable direction for research investigation in the
future.
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